Algorithms: SHORTEST PATHS AND
PROBLEM SOLVING

Ola Svensson

=PFL School of Computer and Communication Sciences

Lecture 21, 6.05.2025

Kruskal's algorithm

Start from empty forest T

Greedily maintain forest T which will become MST at the end:
at each step add cheapest edge that does not create a cycle

RN
N

Minimum spanning tree of weight 1 + 2+ 3 +5+ 6+ 8+ 8+ 10 = 43

Lecture 21, 6.05.2025

Why does it work?

Claim: T is always a sub-forest of a MST

Proof by induction on the number of components/edges in T

Base case: trivial
T is a union of singleton
vertices

Inductive step:

1. By hypothesis, current T is a sub-
forest of a MST,

2. Edge eis an edge of minimum
weight that doesn't create a cycle

e
3. Suppose e creates a cycle with
MST
4. Replace an edge (with larger An MST since weight did not increase!

weight) along this cycle by e
/

Lecture 21, 6.05.2025

Implementation challenge

In each iteration, we need to check whether cheapest edge creates a cycle

This is the same thing as checking whether its endpoints belong to the
same component = use disjoint sets (union-find) data structure

Let the connected components denote sets

> Initially each singleton is a set

> When edge (u,v) is added to T, make union of the two connected
components/sets

Lecture 21, 6.05.2025

Implementation and Analysis

KRUSKAL(G, w)
A=0
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G.E into nondecreasing order by weight w
for each (u, v) taken from the sorted list
if FIND-SET (1) # FIND-SET(v)
A= AU{(u.v)}
UNION(u, v)
return A

v

Initialize A: O(1)

First for loop: V MAKE-SETs

Sort E: O(EIgE)

Second for loop: O(E) FIND-SETs and UNIONs

Total time: O((V + E)a(V))+ O(EIgE) = O(EIgE) = O(Elg V)

If edges already sorted time is O(Ea(V)) which is almost linear

\4

v

v

\4

Lecture 21, 6.05.2025

Problem solving

A feedback edge set of a graph G is a subset F of the edges such that every cycle in G
contains at least one edge in F. In other words, removing every edge in F makes the
graph G acyclic. Describe and analyze a fast algorithm to compute the minimum weight
feedback edge set of a given edge-weighted graph.

Let G = (V, E) be an arbitrary connected graph with weighted edges. Assume further
that no two edges have the same weight.

Prove that for any partition of the vertices V into two subsets, the
minimum-weight edge with one endpoint in each subset is in the minimum
spanning tree of G.

Prove that the maximum-weight edge in any cycle of G is not in the minimum
spanning tree of G.

Lecture 21, 6.05.2025

Greedy is good (sometimes)

v

> Prim'’s algorithm

Min-priority queue for implementation

v

Kruskal's algortihm

Union-Find for implementation

\4

Many applications

Lecture 21, 6.05.2025

THE SHORTEST PATH PROBLEM

Lecture 21, 6.05.2025

Shortest paths

Input: directed graph G = (V, E), edge-weights w(u, v) for (u,v) € E

Shortest paths from a: (may have many solutions)

AT AR
Yy

Lecture 21, 6.05.2025

Problem variants

Single-source: Find shortest paths from source vertex to every vertex

Single-destination: Find shortest paths to given destination vertex

Can be solved by single-source by reversing edge directions

Single-pair: Find shortest path from u to v

No algorithm known that is better in worst case than solving single-source

All-pairs: Find shortest path from u to v for all pairs u, v of vertices

Can be solved by solving single-source for each vertex. Better algorithms known

Lecture 21, 6.05.2025

NEGATIVE WEIGHTS
AND APPLICATIONS

Lecture 21, 6.05.2025

Negative-weight edges

We will allow negative weights

OK, as long as no negative-weight cycle is reachable from source:

P Then we can just keep going around it to have paths of length —oo

Some algorithms only work with positive weights (Dijkstra’s algorithm)

AT
@%ﬁ@(
o V%

Lecture 21, 6.05.2025

Why negative weights?

Example: Buying and selling currency

Strategy from negative cycle:

Start with 10 000 CHF

Convert CHF to RMB

Convert RMB to Euro

Convert Euro to CHF
Amount of CHF obtained:

1010g(6ﬁ7)+log(0‘ 14)+log(1.2) | 10000

= 13000

Lecture 21, 6.05.2025

BELLMAN-FORD ALGORITHM

Lecture 21, 6.05.2025

Improving the shortest-path estimate

Can we improve the shortest path estimate for v by going through v and
taking (u, v)?

RELAX(u, v, w)

ifv.d>u.d+wu,v)
vd = u.d+ wu,v)

V.T = U

Qpra C:Fr@

Bellman-Ford updates shortest-path estimates iteratively by using RELAX

Lecture 21, 6.05.2025

: BELLMAN-FORD (G, w, 5)
Bellman-Ford Algorithm INIT-SINGLE-SOURCE (G,)
fori = 1t0|G.V|—-1

for each edge (u,v) € G.E
RELAX(u, v, w)

N

Lecture 21, 6.05.2025

: BELLMAN-FORD (G, w, 5)
Bellman-Ford Algorithm INIT-SINGLE-SOURCE (G,)
fori = 1t0|G.V|—-1

for each edge (u,v) € G.E
RELAX(u, v, w)

N

Lecture 21, 6.05.2025

Correctness

Only guaranteed to work if no negative cycles!

As we shall see later, it can also be used to detect negative cycles

Lecture 21, 6.05.2025

Optimal substructure

If (s,v1,..., Vk, Vkt1) is a shortest path from s to vii1
Then (s, v1,...,vk) is a shortest path from s to v

Proof:

> Suppose toward contradiction: there exists shorter path p’ from s to v

> Then weight of p’ + (v, vk+1) is smaller than p + (v, vk+1) which contradicts
that p + (v, vk+1) was a shortest path from s to vy 1

with w(p’) < w(p)

Lecture 21, 6.05.2025

Invariant: ¢(v) is at most the length of the shortest path from s to v
using at most i edges after the i'th iteration

Proof by induction:
Base case trivial: when 0 iterations £(s) = 0 and all other equal to infinity

Inductive step: consider any shortest path from s to Vk41 using at most i edges

» The path p from s to vii1's predecessor vy is the shortest path using at most
i — 1 edges (by optimal substructure)

By induction hypothesis ¢(vx) < w(p) after previous iteration

Hence, £(vk+1) < €(vk) + w(vk, vikt1) < “length of shortest path from s to
Vk+1 using at most i edges” in the i-th iteration

p using i-1 edges

&

Proof of correctness

Invariant: ¢(v) is at most the length of the shortest path from s to v
using at most i edges after the i'th iteration

If there are no negative cycles reachable from s, then for any v there
is a shortest path from s to v using at most n — 1 edges

Proof: If there is a path with n or more edges, then there is a cycle and
since its weight is non-negative it can be removed

LN

Path is no longer

Therefore, Bellman-Ford will return correct answer if no negative cycles
after n — 1 iterations

Lecture 21, 6.05.2025

Detecting negative cycles

There is a negative cycle reachable from the source if and only if the
l-value of at least one node changes if we run one more (n:th) iteration
of Bellman-Ford

BELLMAN-FORD(G, w, s)

INIT-SINGLE-SOURCE(G, 5)
fori = 1to|G.V|—1
for each edge (u,v) € G.E
RELAX (u, v, w)
for each edge (u,v) € G.E
ifv.d>u.d+ wu,v)
return FALSE
return TRUE

Lecture 21, 6.05.2025

Detecting negative cycles

There is no negative cycle reachable from the source if and only if the
(-value of no node changes if we run one more (n:th) iteration of
Bellman-Ford

From the correctness proof, we have that if there are no negative cycles reachable
from the source, then the £ values don’t change in n:th iteration.

We need to prove: If the /-value of the vertices don’t change in the n:th
iteration, then there is no negative cycle that is reachable from the source

Proof. In this case V(u,v) € E : £(u) + w(u,v) > £(v).

Soforacycle v —vi — -+ —v_1 — vt = vy,

t t t t
ZZ(VI) < Z(Z(Vifl) +w(vi1,vi)) = Zf(viﬂ) + Z w(vi—1, Vi)
i=1 i=1 i=1 i=1

Red sums are the same, hence the cycle is non-negative 0 < Z:zl w(vi—1, v;)

Lecture 21, 6.05.2025

BELLMAN-FORD(G, w, §)
ent p | el INIT-SINGLE-SOURCE (G, s)
fori =1t0|G.V|—-1

for each edge (u,v) € G.E
RELAX(u, v, w)
for each edge (u,v) € G.E
ifv.d >u.d+ wu,v)
return FALSE
return TRUE

o 4 1‘. 4= -
W

No negative cycles, BF returns TRUE

Lecture 21, 6.05.2025

BELLMAN-FORD(G, w, §)
ent p | e 2 INIT-SINGLE-SOURCE (G, s)
fori =1t0|G.V|—-1

for each edge (u,v) € G.E
RELAX(u, v, w)
for each edge (u,v) € G.E
ifv.d >u.d+ wu,v)
return FALSE
return TRUE

o :1 1: -4’_2
W

Negative cycles, BF returns FALSE

Lecture 21, 6.05.2025

Runtime analysis

BELLMAN-FORD(G, w, s)

INIT-SINGLE-SOURCE(G, s)
fori = 1to|G.V|—1
for each edge (u,v) € G.E
RELAX(u, v, w)
for each edge (u,v) € G.E
ifv.d>u.d+ wu,v)
return FALSE
return TRUE

> INIT-SINGLE-SOURCE updates ¢, 7 for each vertex in time ©(V)

> Nested for loops runs RELAX V — 1 times for each edge. Hence
total time for these loops is ©(E - V)

> Final for loop runs once for each edge. Time is ©(E)

Total time: ©(E - V)

Lecture 21, 6.05.2025

Final comments on Bellman-Ford

> Can be used to find negative cycles

> Run for n-iterations and detect cycles in “shortest path tree” these will
correspond to negative cycles

> Easy to implement in distributed settings: each vertex repeatedly
ask their neighbors for the best path

> Good for routing and dynamic networks

Lecture 21, 6.05.2025

The famous alpine ski racer Lindsey Vonn has sent her assistant to measure the
altitude differences of the ski lifts and slopes of a famous ski resort in Switzerland.
The assistant returns after several days of hard work with a map of all ski lifts and all
slopes together with the altitude difference between the start station and the end
station of each lift and the altitude difference between the start station and end
station of each slope. A slope starts from the end station of a lift and ends at the
start station of a potentially different lift (see the figure below).

Lindsey wants to verify the map of her assistant by performing the following sanity
check: starting from any point A, no matter how we ski (using lifts and slopes), the
altitude change when we return to A should be 0 (i.e., neither strictly negative nor
strictly positive). Design an algorithm to perform this sanity check and analyze its
running time in terms of the number of slopes and ski lifts (|E|) and the number of
start and end stations (|V]). Your algorithm should run in polynomial time (in |V| and
|EJ).

DIJKSTRA’S ALGORITHM

Lecture 21, 6.05.2025

Dijkstra’s algorithm

> Only works when all weights are nonnegative
> Greedy and faster than Bellman-Ford

> Similar idea to Prim’s algorithm (essentially weighted version of BFS)

Lecture 21, 6.05.2025

Dijkstra’s algorithm

Start with source S = {s}

Greedily grow S:
at each step add to S the vertex that is closest to s
(minimum over v ¢ S of minimum over u € S, u.d + w(u, v))

2

TN
<

11

Lecture 21, 6.05.2025

Implementation and Running Time

Implementation with priority-queue as Prim’s algorithm with shortest
path keys:

DUKSTRA(G, w, s)

INIT-SINGLE-SOURCE(G, 5)
S=0
Q0 =GV // ie., insert all vertices into Q
while O # ¢

u = EXTRACT-MIN(Q)

S =SU{u}

for each vertex v € G.Adj[u]

RELAX (u, v, w)

Running time Like Prim's dominated by operations on priority queue:

> If binary heap, each operation takes O(lg V') time = O(Elg V)
> More careful implementation time is O(V IgV + E)

Lecture 21, 6.05.2025

Problem Solving

Show that Dijkstra's Algorithm is correct by proving the following loop
invariant:

“At the start of each iteration, we have for all v € S that the distance
v.d from s to v is equal to the shortest path from s to v"

Lecture 21, 6.05.2025

