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Kruskal’s algorithm

Start from empty forest T

Greedily maintain forest T which will become MST at the end:
at each step add cheapest edge that does not create a cycle

Minimum spanning tree of weight 1 + 2 + 3 + 5 + 6 + 8 + 8 + 10 = 43
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Why does it work?

Claim: T is always a sub-forest of a MST

Proof by induction on the number of components/edges in T
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Implementation challenge

In each iteration, we need to check whether cheapest edge creates a cycle

This is the same thing as checking whether its endpoints belong to the
same component ∆ use disjoint sets (union-find) data structure

Let the connected components denote sets
I Initially each singleton is a set

I When edge (u, v) is added to T , make union of the two connected

components/sets

Lecture 21, 6.05.2025



Implementation and Analysis

I Initialize A: O(1)
I First for loop: V Make-Sets
I Sort E : O(E lg E )
I Second for loop: O(E ) Find-Sets and Unions
I Total time: O((V + E )–(V )) + O(E lg E ) = O(E lg E ) = O(E lg V )

If edges already sorted time is O(E–(V )) which is almost linear
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Problem solving

A feedback edge set of a graph G is a subset F of the edges such that every cycle in G

contains at least one edge in F . In other words, removing every edge in F makes the

graph G acyclic. Describe and analyze a fast algorithm to compute the minimum weight

feedback edge set of a given edge-weighted graph.

Let G = (V , E) be an arbitrary connected graph with weighted edges. Assume further

that no two edges have the same weight.

1 Prove that for any partition of the vertices V into two subsets, the

minimum-weight edge with one endpoint in each subset is in the minimum

spanning tree of G.

2 Prove that the maximum-weight edge in any cycle of G is not in the minimum

spanning tree of G.
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Summary

I Greedy is good (sometimes)

I Prim’s algorithm

Min-priority queue for implementation

I Kruskal’s algortihm

Union-Find for implementation

I Many applications
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THE SHORTEST PATH PROBLEM
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Shortest paths

Input: directed graph G = (V , E ), edge-weights w(u, v) for (u, v) œ E

Shortest paths from a: (may have many solutions)
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Problem variants

Single-source: Find shortest paths from source vertex to every vertex

Single-destination: Find shortest paths to given destination vertex

Can be solved by single-source by reversing edge directions

Single-pair: Find shortest path from u to v

No algorithm known that is better in worst case than solving single-source

All-pairs: Find shortest path from u to v for all pairs u, v of vertices

Can be solved by solving single-source for each vertex. Better algorithms known
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NEGATIVE WEIGHTS
AND APPLICATIONS
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Negative-weight edges

We will allow negative weights

OK, as long as no negative-weight cycle is reachable from source:
I Then we can just keep going around it to have paths of length ≠Œ

Some algorithms only work with positive weights (Dijkstra’s algorithm)
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Why negative weights?

Example: Buying and selling currency
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BELLMAN-FORD ALGORITHM
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Improving the shortest-path estimate

Can we improve the shortest path estimate for v by going through u and
taking (u, v)?
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Bellman-Ford updates shortest-path estimates iteratively by using Relax
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Bellman-Ford Algorithm
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Bellman-Ford Algorithm

0 2

1

1

0 -3

-41

-2

1

-2-1

3

Lecture 21, 6.05.2025



Correctness

Only guaranteed to work if no negative cycles!

As we shall see later, it can also be used to detect negative cycles
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Optimal substructure

If Ès, v1, . . . , vk , vk+1Í is a shortest path from s to vk+1

Then Ès, v1, . . . , vkÍ is a shortest path from s to vk

Proof:
I Suppose toward contradiction: there exists shorter path pÕ

from s to vk

I Then weight of pÕ
+ (vk , vk+1) is smaller than p + (vk , vk+1) which contradicts

that p + (vk , vk+1) was a shortest path from s to vk+1
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Proof of correctness

Invariant: ¸(v) is at most the length of the shortest path from s to v

using at most i edges after the i ’th iteration

Proof by induction:
Base case trivial: when 0 iterations ¸(s) = 0 and all other equal to infinity

Inductive step: consider any shortest path from s to vk+1 using at most i edges

I The path p from s to vk+1’s predecessor vk is the shortest path using at most

i ≠ 1 edges (by optimal substructure)

I By induction hypothesis ¸(vk) Æ w(p) after previous iteration

I Hence, ¸(vk+1) Æ ¸(vk) + w(vk , vk+1) Æ “length of shortest path from s to

vk+1 using at most i edges” in the i-th iteration
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Proof of correctness

Invariant: ¸(v) is at most the length of the shortest path from s to v

using at most i edges after the i ’th iteration

If there are no negative cycles reachable from s, then for any v there
is a shortest path from s to v using at most n ≠ 1 edges

Proof: If there is a path with n or more edges, then there is a cycle and
since its weight is non-negative it can be removed

Therefore, Bellman-Ford will return correct answer if no negative cycles
after n ≠ 1 iterations
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Detecting negative cycles

There is a negative cycle reachable from the source if and only if the
¸-value of at least one node changes if we run one more (n:th) iteration
of Bellman-Ford
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Detecting negative cycles

There is no negative cycle reachable from the source if and only if the
¸-value of no node changes if we run one more (n:th) iteration of
Bellman-Ford

From the correctness proof, we have that if there are no negative cycles reachable

from the source, then the ¸ values don’t change in n:th iteration.

We need to prove: If the ¸-value of the vertices don’t change in the n:th
iteration, then there is no negative cycle that is reachable from the source

Proof. In this case ’(u, v) œ E : ¸(u) + w(u, v) Ø ¸(v).

So for a cycle v0 ≠ v1 ≠ · · · ≠ vt≠1 ≠ vt = v0,

tÿ

i=1

¸(vi ) Æ
tÿ

i=1

(¸(vi≠1) + w(vi≠1, vi )) =

tÿ

i=1

¸(vi≠1) +

tÿ

i=1

w(vi≠1, vi )

Red sums are the same, hence the cycle is non-negative 0 Æ
q

t

i=1
w(vi≠1, vi )
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Example 1
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No negative cycles, BF returns TRUE
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Example 2
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Negative cycles, BF returns FALSE
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Runtime analysis

I Init-Single-Source updates ¸, fi for each vertex in time �(V )
I Nested for loops runs Relax V ≠ 1 times for each edge. Hence

total time for these loops is �(E · V )
I Final for loop runs once for each edge. Time is �(E )

Total time: �(E · V )
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Final comments on Bellman-Ford

I Can be used to find negative cycles
I Run for n-iterations and detect cycles in “shortest path tree” these will

correspond to negative cycles

I Easy to implement in distributed settings: each vertex repeatedly
ask their neighbors for the best path
I Good for routing and dynamic networks
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Problem solving (20 pts * exam question last year)

The famous alpine ski racer Lindsey Vonn has sent her assistant to measure the

altitude di�erences of the ski lifts and slopes of a famous ski resort in Switzerland.

The assistant returns after several days of hard work with a map of all ski lifts and all

slopes together with the altitude di�erence between the start station and the end

station of each lift and the altitude di�erence between the start station and end

station of each slope. A slope starts from the end station of a lift and ends at the

start station of a potentially di�erent lift (see the figure below).

Lindsey wants to verify the map of her assistant by performing the following sanity

check: starting from any point A, no matter how we ski (using lifts and slopes), the

altitude change when we return to A should be 0 (i.e., neither strictly negative nor

strictly positive). Design an algorithm to perform this sanity check and analyze its

running time in terms of the number of slopes and ski lifts (|E |) and the number of

start and end stations (|V |). Your algorithm should run in polynomial time (in |V | and

|E |).
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DIJKSTRA’S ALGORITHM
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Dijkstra’s algorithm

I Only works when all weights are nonnegative

I Greedy and faster than Bellman-Ford

I Similar idea to Prim’s algorithm (essentially weighted version of BFS)
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Dijkstra’s algorithm

Start with source S = {s}

Greedily grow S:
at each step add to S the vertex that is closest to s

(minimum over v < S of minimum over u œ S, u.d + w(u, v))
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Implementation and Running Time

Implementation with priority-queue as Prim’s algorithm with shortest
path keys:

Running time Like Prim’s dominated by operations on priority queue:
I If binary heap, each operation takes O(lg V ) time ∆ O(E lg V )
I More careful implementation time is O(V lg V + E )

Lecture 21, 6.05.2025



Problem Solving

Show that Dijkstra’s Algorithm is correct by proving the following loop
invariant:

“At the start of each iteration, we have for all v œ S that the distance
v .d from s to v is equal to the shortest path from s to v”
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